Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 379(6636): 1010-1015, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36893247

RESUMEN

Dynamic measurements of molecular machines can provide invaluable insights into their mechanism, but these measurements have been challenging in living cells. Here, we developed live-cell tracking of single fluorophores with nanometer spatial and millisecond temporal resolution in two and three dimensions using the recently introduced super-resolution technique MINFLUX. Using this approach, we resolved the precise stepping motion of the motor protein kinesin-1 as it walked on microtubules in living cells. Nanoscopic tracking of motors walking on the microtubules of fixed cells also enabled us to resolve the architecture of the microtubule cytoskeleton with protofilament resolution.


Asunto(s)
Células , Cinesinas , Microscopía Fluorescente , Microtúbulos , Células/química , Células/metabolismo , Colorantes Fluorescentes/análisis , Cinesinas/química , Cinesinas/metabolismo , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Microtúbulos/química , Microtúbulos/metabolismo , Movimiento (Física) , Humanos
2.
J Cell Biol ; 222(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36752787

RESUMEN

Microtubules are dynamic cytoskeletal polymers, and their organization and stability are tightly regulated by numerous cellular factors. While regulatory proteins controlling the formation of interphase microtubule arrays and mitotic spindles have been extensively studied, the biochemical mechanisms responsible for generating stable microtubule cores of centrioles and cilia are poorly understood. Here, we used in vitro reconstitution assays to investigate microtubule-stabilizing properties of CSPP1, a centrosome and cilia-associated protein mutated in the neurodevelopmental ciliopathy Joubert syndrome. We found that CSPP1 preferentially binds to polymerizing microtubule ends that grow slowly or undergo growth perturbations and, in this way, resembles microtubule-stabilizing compounds such as taxanes. Fluorescence microscopy and cryo-electron tomography showed that CSPP1 is deposited in the microtubule lumen and inhibits microtubule growth and shortening through two separate domains. CSPP1 also specifically recognizes and stabilizes damaged microtubule lattices. These data help to explain how CSPP1 regulates the elongation and stability of ciliary axonemes and other microtubule-based structures.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Asociadas a Microtúbulos , Microtúbulos , Centriolos/metabolismo , Centrosoma/metabolismo , Citoesqueleto/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos
3.
ACS Chem Biol ; 16(11): 2130-2136, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34734690

RESUMEN

Here we report a small molecule tubulin probe for single-molecule localization microscopy (SMLM), stimulated emission depletion (STED) microscopy and MINFLUX nanoscopy, which can be used in living and fixed cells. We explored a series of taxane derivatives containing spontaneously blinking far-red dye hydroxymethyl silicon-rhodamine (HMSiR) and found that the linker length profoundly affects the probe permeability and off-targeting in living cells. The best performing probe, HMSiR-tubulin, is composed of cabazitaxel and the 6'-regioisomer of HMSiR bridged by a C6 linker. Microtubule diameter of ≤50 nm was routinely measured in SMLM experiments on living and fixed cells. HMSiR-tubulin allows a complementary use of different nanoscopy techniques for investigating microtubule functions and developing imaging methods. For the first time, we resolved the inner microtubule diameter of 16 ± 5 nm by optical nanoscopy and thereby demonstrated the utility of a self-blinking dye for MINFLUX imaging.


Asunto(s)
Microscopía/métodos , Taxoides/química , Tubulina (Proteína)/química , Línea Celular Tumoral , Colorantes Fluorescentes , Humanos , Microtúbulos/química , Microtúbulos/fisiología , Estructura Molecular , Osteosarcoma , Rodaminas/química , Imagen Individual de Molécula , Análisis de la Célula Individual
4.
J Cell Biol ; 220(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34160561

RESUMEN

Cells are 3D objects. Therefore, volume EM (vEM) is often crucial for correct interpretation of ultrastructural data. Today, scanning EM (SEM) methods such as focused ion beam (FIB)-SEM are frequently used for vEM analyses. While they allow automated data acquisition, precise targeting of volumes of interest within a large sample remains challenging. Here, we provide a workflow to target FIB-SEM acquisition of fluorescently labeled cells or subcellular structures with micrometer precision. The strategy relies on fluorescence preservation during sample preparation and targeted trimming guided by confocal maps of the fluorescence signal in the resin block. Laser branding is used to create landmarks on the block surface to position the FIB-SEM acquisition. Using this method, we acquired volumes of specific single cells within large tissues such as 3D cultures of mouse mammary gland organoids, tracheal terminal cells in Drosophila melanogaster larvae, and ovarian follicular cells in adult Drosophila, discovering ultrastructural details that could not be appreciated before.


Asunto(s)
Drosophila melanogaster/ultraestructura , Células de la Granulosa/ultraestructura , Glándulas Mamarias Animales/ultraestructura , Microscopía Electrónica de Rastreo/métodos , Coloración y Etiquetado/métodos , Células Tecales/ultraestructura , Tráquea/ultraestructura , Animales , Drosophila melanogaster/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Femenino , Expresión Génica , Genes Reporteros , Células de la Granulosa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Larva/metabolismo , Larva/ultraestructura , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Glándulas Mamarias Animales/metabolismo , Ratones , Microscopía Electrónica de Rastreo/instrumentación , Organoides/metabolismo , Organoides/ultraestructura , Análisis de la Célula Individual/instrumentación , Análisis de la Célula Individual/métodos , Células Tecales/metabolismo , Tráquea/metabolismo , Flujo de Trabajo , Proteína Fluorescente Roja
5.
Plant Direct ; 4(9): e00261, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32995700

RESUMEN

Subdiffraction super-resolution fluorescence microscopy, or nanoscopy, has seen remarkable developments in the last two decades. Yet, for the visualization of plant cells, nanoscopy is still rarely used. In this study, we established RESOLFT nanoscopy on living green plant tissue. Live-cell RESOLFT nanoscopy requires and utilizes comparatively low light doses and intensities to overcome the diffraction barrier. We generated a transgenic Arabidopsis thaliana plant line expressing the reversibly switchable fluorescent protein rsEGFP2 fused to the mammalian microtubule-associated protein 4 (MAP4) in order to ubiquitously label the microtubule cytoskeleton. We demonstrate the use of RESOLFT nanoscopy for extended time-lapse imaging of cortical microtubules in Arabidopsis leaf discs. By combining our approach with fluorescence lifetime gating, we were able to acquire live-cell RESOLFT images even close to chloroplasts, which exhibit very strong autofluorescence. The data demonstrate the feasibility of subdiffraction resolution imaging in transgenic plant material with minimal requirements for sample preparation.

6.
Org Biomol Chem ; 18(15): 2929-2937, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32239080

RESUMEN

The actin cytoskeleton is crucial for endocytosis, intracellular trafficking, cell shape maintenance and a wide range of other cellular functions. Recently introduced cell-permeable fluorescent actin probes, such as SiR-actin, suffer from poor membrane permeability and stain some cell populations inhomogeneously due to the active efflux by the plasma membrane pumps. We analyzed a series of new probes composed of jasplakinolide and modified rhodamine fluorophores and found that rhodamine positional isomerism has a profound effect on probe performance. The probes based on the 6'-carboxy-carbopyronine scaffold are considerably less susceptible to efflux and allow efficient staining without efflux pump inhibitors. They can be used for 2D and 3D fluorescence nanoscopy at high nanomolar concentrations without significant cytotoxicity. We show that jasplakinolide-based fluorescent probes bind not only to actin filaments, but also to G-actin, which enables imaging highly dynamic actin structures. We demonstrate an excellent performance of the new probes in multiple organisms and cell types: human cell lines, frog erythrocytes, fruit fly tissues and primary neurons.


Asunto(s)
Actinas/análisis , Depsipéptidos/química , Colorantes Fluorescentes/química , Imagen Óptica , Rodaminas/química , Células Cultivadas , Colorantes Fluorescentes/síntesis química , Células HeLa , Humanos , Estructura Molecular
7.
Opt Express ; 27(15): 21956-21987, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31510262

RESUMEN

The ultimate objective of a microscope of the highest resolution is to map the molecules of interest in the sample. Traditionally, linear imaging systems are characterized by their spatial frequency transfer function, which is given, in real space, by the point spread function (PSF). By extending the concept of the PSF towards the molecular contribution function (MCF), that quantifies the average contribution of a single fluorophore to the image, a straightforward concept for counting fluorophores is obtained. Using reversible saturable optical fluorescence transitions (RESOLFT), fluorophores are effectively activated only in a small, subdiffraction-sized volume before they are read out. During readout the signal exhibits an increased variance due to the stochastic nature of prior activation, which scales quadratically with the brightness of the active fluorophores while the mean of the signal scales only linearly with it. Using a two-state Markov model for the activation, showing comparable behavior to the switching kinetics of the switchable fluorescent protein rsEGFP2, we can approximate quantitatively the MCF of RESOLFT nanoscopy allowing to count the number of fluorophores within a subdiffraction-sized region of the sample. The method is validated on measurements of tubulin structures in Drosophila melagonaster larvae. Modeling and estimation of the MCF is a promising approach to quantitative microscopy.

8.
Chem Sci ; 9(13): 3324-3334, 2018 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-29780462

RESUMEN

We introduce fluorogenic tubulin probes based on the recently reported fluorescent dyes (510R, 580CP, GeR and SiR) and chemotherapy agents - taxanes (docetaxel, cabazitaxel and larotaxel). The cytotoxicity of the final probe, its staining performance and specificity strongly depend on both components. We found correlation between the aggregation efficiency (related to the spirolactonization of fluorophore) and cytotoxicity. Probe optimization allowed us to reach 29 ± 11 nm resolution in stimulated emission depletion (STED) microscopy images of the microtubule network in living human fibroblasts. Application to living fruit fly (Drosophila melanogaster) tissues highlighted two distinct structures: microtubules and tracheoles. We identified 6-carboxy isomers of 580CP and SiR dyes as markers for chitin-containing taenidia, a component of tracheoles. STED microscopy revealed correlation between the taenidia periodicity and the diameter of the tracheole. Combined tubulin and taenidia STED imaging showed close interaction between the microtubules and respiratory networks in living tissues of the insect larvae.

9.
Angew Chem Int Ed Engl ; 55(49): 15429-15433, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27767250

RESUMEN

Reversibly photoswitchable 1,2-bis(2-ethyl-6-phenyl-1-benzothiophene-1,1-dioxide-3-yl)perfluorocyclopentenes (EBT) having fluorescent "closed" forms were decorated with four or eight carboxylic groups and attached to antibodies. Low aggregation, efficient photoswitching in aqueous buffers, specific staining of cellular structures, and good photophysical properties were demonstrated. Alternating light pulses of UV and blue light induce numerous reversible photochemical transformations between two stables states with distinct structures. Using relatively low light intensities, EBTs were applied in biology-related super-resolution microscopy based on the reversible saturable (switchable) optical linear fluorescence transitions (RESOLFT) and demonstrated optical resolution of 75 nm.

10.
Elife ; 52016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27355614

RESUMEN

Despite remarkable developments in diffraction unlimited super-resolution microscopy, in vivo nanoscopy of tissues and model organisms is still not satisfactorily established and rarely realized. RESOLFT nanoscopy is particularly suited for live cell imaging because it requires relatively low light levels to overcome the diffraction barrier. Previously, we introduced the reversibly switchable fluorescent protein rsEGFP2, which facilitated fast RESOLFT nanoscopy (Grotjohann et al., 2012). In that study, as in most other nanoscopy studies, only cultivated single cells were analyzed. Here, we report on the use of rsEGFP2 for live-cell RESOLFT nanoscopy of sub-cellular structures of intact Drosophila melanogaster larvae and of resected tissues. We generated flies expressing fusion proteins of alpha-tubulin and rsEGFP2 highlighting the microtubule cytoskeleton in all cells. By focusing through the intact larval cuticle, we achieved lateral resolution of.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/ultraestructura , Microscopía Intravital/métodos , Animales , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Larva/citología , Larva/ultraestructura , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...